

# FARO® 8-AXIS QUANTUME FAROARM®

# The New Standard for Cost-Effective Factory Inspection

Seamlessly integrating a Quantum<sup>E</sup> FaroArm with an eighth-axis, the FARO 8-Axis Quantum<sup>E</sup> FaroArm is the world's first eight-axis portable coordinate measuring machine (PCMM). The Quantum<sup>E</sup> offers an entry-level portable solution for organizations looking for a cost-effective, user-friendly and efficient factory inspection system. Reliable and robust, Quantum<sup>E</sup> has been tested to withstand the harshest shop-floor environments, enabling manufacturers to have full confidence in their quality assurance processes and ensuring high quality production. Additionally, the Quantum<sup>E</sup> delivers market-leading portability and ergonomics along with plug-and-play 3D laser scanning integration with optically-superior FAROBlu<sup>™</sup> technology. The measurement speed and ergonomics of the 8-Axis Quantum<sup>E</sup> are taken to an even greater level. The eighth-axis enables rotation of what is being measured in real-time – meaning no difficult reaching around the object, and no need to move the Arm into different locations within the process. This eliminates wasted time and offers an easy-to-use measurement solution that allows users to focus on the actual measurement and not on the measurement processes.



## **Most Common Applications**

Alignment | Dimensional Analysis | CAD-Based Inspection | First Article Inspection | Incoming Inspection | In-Process Inspection | On-Machine Inspection | Part Inspection | Final Inspection | Reverse Engineering | Tool Building & Setup

# **Typical Industries**

**Aerospace:** Part Inspection and Certification, Alignment, Tool & Mold Certification, Reverse Engineering

**Automotive:** Tool Building and Certification, Alignment, Part Inspection, Reverse Engineering

Metal Fabrication: First Article Inspection, Periodic Part Inspection

**Molding/Tool & Die:** Mold and Die Inspection, Prototype Part Scanning

#### **Features & Benefits**

# Certified to Meet the Most Rigorous ISO 10360-12:2016 Measurement Standard

Quantum Arms are the first Arms in the market that are certified against ISO 10360-12:2016 for articulated arms, setting a new industry performance bar, and ensuring maximum measurement consistency and reliability.

# Innovative Design for Highest Performance and Factory Stress-Tested for Reliability

An all-new design ensures superior performance and confidence in measurement results in every working environment, while the FAROBlu, featuring blue laser technology, ensures best-in-class scanning capability. The 8-Axis Quantum<sup>E</sup> allows for capture with only small movements, reducing repositioning needs and time to capture measurements. Every Quantum is tested for ruggedness and is factory-ready to ensure accuracy and performance.

#### **Excellent Ergonomics and Usability**

The advanced ergonomic design, overall weight optimization, combined with new features such as tool-less quick-change, kinematic intelligent probes, provide unequaled freedom of movement and an unparalleled measurement experience. With the ability to rotate the component being measured in real-time, the 8-Axis Quantum<sup>E</sup> dramatically improves ergonomic functionality and ease-of-use.

#### **High Speed Wireless Operation**

New sophisticated and robust electronic design delivers superior reliability and guarantees optimal wireless operation for scanning and probing, allowing unmatched reach across the manufacturing floor.

#### **Extended Battery Use**

Dual hot-swappable batteries support prolonged cable-free operation of the device, making it easy to go to the part without the need for external power.

#### **FAROBlu Laser Line Probe**

The FAROBlu Laser Line Probe HD and FAROBlu Laser Line Probe SD leverage optically-superior blue laser technology. The blue laser has a shorter wavelength than a red laser, and delivers improved scanning results with higher resolution, enabling it to discover smaller details in an object. The blue laser also provides a 50% reduction in speckle noise compared to a red laser. Speckle noise is proportional to wavelength and degrades measurement accuracy.

### **Performance Specifications**

| Contact Measurement (Arm)*         |                   |                               |                                |                                |                               |
|------------------------------------|-------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Measurement Range                  | SPAT <sup>1</sup> | E <sub>UNI</sub> <sup>2</sup> | P <sub>SIZE</sub> <sup>3</sup> | P <sub>FORM</sub> <sup>4</sup> | L <sub>DIA</sub> <sup>5</sup> |
|                                    | 7 axis            | 7 axis                        | 7 axis                         | 7 axis                         | 7 axis                        |
| Quantum <sup>E</sup> 2.5m (8.2ft)  | 0.035mm           | 0.050mm                       | 0.025mm                        | 0.050mm                        | 0.065mm                       |
|                                    | (0.0014in)        | (0.0020in)                    | (0.0010in)                     | (0.0020in)                     | (0.0026in)                    |
| Quantum <sup>E</sup> 3.5m (11.5ft) | 0.075mm           | 0.095mm                       | 0.050mm                        | 0.075mm                        | 0.120mm                       |
|                                    | (0.0030in)        | (0.0037in)                    | (0.0020in)                     | (0.0030in)                     | (0.0047in)                    |
| Quantum <sup>E</sup> 4.0m (13.1ft) | 0.095mm           | 0.120mm                       | 0.060mm                        | 0.100mm                        | 0.150mm                       |
|                                    | (0.0037in)        | (0.0047in)                    | (0.0024in)                     | (0.0039in)                     | (0.0059in)                    |

| 8-Axis System**           |                              |  |  |  |
|---------------------------|------------------------------|--|--|--|
| Measurement range         | System Accuracy <sup>6</sup> |  |  |  |
| Quantum <sup>E</sup> 2.5m | 0.065mm                      |  |  |  |
| (8.2ft)                   | (0.0026in)                   |  |  |  |
| Quantum <sup>E</sup> 3.5m | 0.120mm                      |  |  |  |
| (11.5ft)                  | (0.0047in)                   |  |  |  |
| Quantum <sup>E</sup> 4.0m | 0.150mm                      |  |  |  |
| (13.1ft)                  | (0.0059in)                   |  |  |  |

| FAROBlu HD<br>Non-Contact Measurement (ScanArm)*** |                              |  |  |
|----------------------------------------------------|------------------------------|--|--|
| Measurement<br>Range                               | System Accuracy <sup>6</sup> |  |  |
| Quantum <sup>E</sup> 2.5m                          | 0.075mm                      |  |  |
| (8.2ft)                                            | (0.0030in)                   |  |  |
| Quantum <sup>E</sup> 3.5m                          | 0.110mm                      |  |  |
| (11.5ft)                                           | (0.0043in)                   |  |  |
| Quantum <sup>E</sup> 4.0m                          | 0.130mm                      |  |  |
| (13.1ft)                                           | (0.0051in)                   |  |  |

| FAROBlu SD<br>Non-Contact Measurement (ScanArm)*** |                              |  |  |
|----------------------------------------------------|------------------------------|--|--|
| Measurement<br>Range                               | System Accuracy <sup>6</sup> |  |  |
| Quantum <sup>E</sup> 2.5m                          | 0.075mm                      |  |  |
| (8.2ft)                                            | (0.0030in)                   |  |  |
| Quantum <sup>E</sup> 3.5m                          | 0.110mm                      |  |  |
| (11.5ft)                                           | (0.0043in)                   |  |  |
| Quantum <sup>E</sup> 4.0m                          | 0.130mm                      |  |  |
| (13.1ft)                                           | (0.0051in)                   |  |  |

All values represent MPE (Maximum Permissible Error)

- \* Contact Measurement (Arm): In accordance with ISO 10360-12
- \*\* 8-Axis System (Arm + 8-Axis): Full system performance based on ISO10360-12 Sphere Location Diameter Error (L<sub>Dis</sub>)
- \*\*\* Non-Contact Measurement (ScanArm and ScanArm + 8-Axis): Full System performance based on ISO 10360-8 Annex D
- <sup>1</sup> SPAT Single Point Articulation Test
- <sup>2</sup> E<sub>UNI</sub> Distance Error between two points comparing measured versus nominal values
- <sup>3</sup> P<sub>SIZE</sub> Sphere Probing Size Error comparing measured versus nominal values
- <sup>4</sup> P<sub>FORM</sub> Sphere Probing Form Error
- <sup>5</sup> L<sub>DIA</sub> Sphere Location Diameter Error (Diameter of the spherical zone containing the centers of a sphere measured from multiple orientations)
- <sup>6</sup> System Accuracy Based on Sphere Location Diameter Error

### **Hardware Specifications**

Operating temp range: 10°C - 40°C (50°F - 104°F)

Temperature rate: 3°C/5min (5.4°F/5min)

Operating humidity range: 95%, non-condensing

Power supply: Universal worldwide voltage;

100-240VAC; 47/63Hz

### **Laser Line Probe Specifications**

|                       | FAROBlu HD                                                          | FAROBlu SD                                                          |  |
|-----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Accuracy              | ±25µm (±0.001in)                                                    | ±25µm (±0.001in)                                                    |  |
| Repeatability         | 25μm, 2σ (0.001in)                                                  | 25μm, 2σ (0.001in)                                                  |  |
| Stand-off             | 115mm (4.5in)                                                       | 115mm (4.5in)                                                       |  |
| Depth of field        | 115mm (4.5in)                                                       | 115mm (4.5in)                                                       |  |
| Effective scan width  | Near field 80mm (3.1in)<br>Far field 150mm (5.9in)                  | Near field 80mm (3.1in)<br>Far field 150mm (5.9in)                  |  |
| Points per line       | 2,000 points/line                                                   | 1,000 points/line                                                   |  |
| Minimum point spacing | 40μm (0.0016in)                                                     | 80µm (0.0031in)                                                     |  |
| Scan rate             | 300 frames/second, 300 fps x 2,000 points/line = 600,000 points/sec | 120 frames/second, 120 fps x 1,000 points/line = 120,000 points/sec |  |
| Laser                 | Class 2                                                             | Class 2                                                             |  |
| Weight                | 485g (1.1lb)                                                        | 485g (1.1lb)                                                        |  |

Accuracy and repeatability specified at Full Field of View (FOV)

Meets OSHA requirements, NRTL TÜV SÜD C-US Listed, Complies with Electronic Code of Federal Regulations 47 CFR PART 15, 17 CFR Parts 240 and 249b – Conflict Material, 21 CFR 1040 Performance standards For Light-Emitting Products, and 10 CFR Part 430 – Department of Energy; Energy Conservation for External Power Supplies. Complies with the following EC Directives: 93/68/EEC CE Marking; 2014/30/EU Electrical Equipment; 2014/53/EU Radio Equipment Directive; 2011/65/EU RoHS2; 2002/96/EC WEEE; 2006/66/EC WEEE; 2006/66/EC Batteries and Accumulators; 2014/35/EU Low Voltage Directive; 2009/125/EC Ecodesign requirement. Conforms to the following standards: EN 61010-1:2010 / CSA-C22.2 No. 61010-1; EN 61326-1:2013 EMC; ETSI EN 300 328 V2.1.1; ETSI 301 489-1 V1.9.2; ETSI 301 489-17 V2.2.1; ETSI EN 62311:2008; IEEE 802.11 b/g; FCC Part 15.247 (WLAN and Bluetooth); Japanese Radio Law MPT No. 37 Ordinance (MIC classification WW); UN T1-T8; IEC 62133 2nd ed.; IEC 60825-1:2014 ed3.0; FDA (CDRH) 21 CFR 1040.10 / ANSI Z136.1-2007; EN 50581:2012; 21 CFR 1002 (Records & Reports); 21 CFR 1010 (Performance Standards).

Shock and Vibrations Testing per International Electrotechnical Commission (IEC) Standards: IEC 60068-2-6; IEC 60068-2-64; IEC 60068-2-27 Extreme Temperature Cycling (-20°C to 60°C). Based on: IEC 60068-2-1; MIL-STD-810G; ISTA







